Boron trifluoride (BF3) lewis dot structure, molecular geometry, polar or nonpolar, hybridization, Bond angle

Home BF3 lewis structure and its molecular geometry/shape

BF3 lewis structure molecular geometry

Boron trifluoride is composed of boron and fluorine, having the chemical formula BF3 appears as colorless gas in anhydrous conditions and colorless liquid in dihydrate conditions.

In this tutorial, we will discuss Boron trifluoride (BF3) lewis structure, molecular geometry, Bond angle, hybridization, polar or nonpolar, etc.

Bromide trifluoride forms white fumes in moist air. It is nonflammable and soluble in benzene, hexane, chloroform, etc.

Name of MoleculeBoron trifluoride
Chemical formulaBF3
Molecular geometry of BF3Trigonal planar
Electron geometry of BF3Trigonal planar
HybridizationSp2
Bond angle (F-B-F)120º
NatureNonpolar
Total Valence electron in BF324
Overall Formal charge in BF3Zero

How to draw lewis structure of BF3 (Boron trifluoride)?

Boron trifluoride (BF3) lewis structure comprises of three B-F bonds, with boron in a central position and all three fluorine as outer atoms in the lewis diagram. The lewis dot structure of BF3 contains a total of 3 bond pairs and 9 lone pairs.

The drawing of the Lewis structure of BF3 is very easy and simple. Let’s see how to do it.

Steps for drawing the Lewis dot structure for BF3

1. Count total valence electron in BF3

First of all, determine the valence electron that is available for drawing the lewis structure of BF3 because the lewis diagram is all about the representation of valence electrons around atoms.

So, an easy way to find the valence electron of atoms in the BF3 molecule is, just to look at the periodic group of boron and fluorine atoms.

As the boron atom belongs to the 13th group in the periodic table and fluorine is situated in the 17th group, hence, the valence electron for the boron is 3, and for the fluorine atom, it is 7.

⇒ Total number of the valence electrons in boron = 3

⇒ Total number of the valence electrons in fluorine = 7

∴ Total number of valence electron available for the BF3 Lewis structure = 3 + 7×3 = 24 valence electrons         [∴ BF3 molecule has one boron and three fluorine atoms]

valence electrons in BF3 lewis structure

2. Find the least electronegative atom and place it at center

An atom with a less electronegative value is preferable for the central position in the lewis diagram because they are more prone to share the electrons with surrounding atoms.

In the case of the BF3 molecule, the boron atom is less electronegative than the fluorine atom.

Hence, put the boron atom at the central position of the lewis diagram and all three fluorine atoms outside to it.

least electronegative atom in BF3

3. Connect outer atoms to central atom with a single bond

In this step, join all outer atoms to the central atom with the help of a single bond.

In, the BF3 molecule, fluorine is the outer atom, and boron is the central atom. Hence, joined them as shown in the figure given below.

BF3 skeletal structure

Count the number of valence electrons used in the above structure. There are 3 single bonds used in the above structure, and one single bond means 2 electrons.

Hence, in the above structure, (3 × 2) = 6 valence electrons are used from a total of 24 valence electrons available for drawing the BF3 Lewis structure.

∴ (24 – 6) = 18 valence electrons

So, we are left with 18 valence electrons more.

4. Place remaining electrons on the outer atom first and complete their octet

Let’s start putting the remaining valence electrons on outer atoms first. In the case of the BF3 molecule, fluorine is the outer atom and each of them needs 8 electrons in their valence shell to complete the octet.

Start putting the remaining electrons on fluorine atoms as dots till they complete their octet.

BF3 lewis dot structure

So, all fluorine atoms in the above structure completed their octet, because all of them have 8 electrons(6 electrons represented as dots + 2 electrons in every single bond) in their outermost shell.

Now again count the valence electron in the above structure.

In the above structure, there is 18 electrons are represented as dots + three single bonds that contain 6 electrons means a total of 24 valence electrons is used in the above structure.

So, we have used all the valence electrons available for drawing the lewis structure of BF3.

We don’t have any extra valence electrons left and the central atom boron has only 6 electrons(3 single bonds) in its valence shell.

It should be noted that Boron is exceptional to the octet rule as it can have 8 electrons or less than 8 electrons in the outermost shell to attain stability. Boron is an exception just like aluminum where it can be octet deficient.

Octet deficient molecules are the molecules that can attains the stability by having less than 8 electrons around the atoms. Some examples – Boron, beryllium, aluminum, hydrogen, lithium, helium

But boron and aluminum is two most common element that can fail to complete the octet as they attains stability having only 6 valence electrons.

Let’s check the formal charge for the above structure to verify it’s stable or not.

5. Check the stability with the help of a formal charge concept

The lesser the formal charge on atoms, the better is the stability of the lewis diagram.

To calculate the formal charge on an atom. Use the formula given below-

formal charge formula for lewis diagram

⇒ Formal charge = (valence electrons – nonbonding electrons –  1/2 bonding electrons)

Let’s count the formal charge for the 4th step structure.

 For fluorine atom

⇒ Valence electrons of fluorine = 7

⇒ Nonbonding electrons on fluorine = 6

⇒ Bonding electrons around fluorine (1 single bond) = 2

∴ (7 – 6 – 2/2) = 0 formal charge on the fluorine atoms.

 For boron atom

⇒ Valence electrons of boron = 3

⇒ Nonbonding electrons on boron = 0

⇒ Bonding electrons around boron (3 single bonds) = 6

∴ (3 – 0 – 6/2) = 0 formal charge on the boron central atom.

Boron trifluoride (BF3) lewis structure

Boron trifluoride (BF3) Lewis structure

Hence, in the above BF3 lewis dot structure, all atoms get a formal charge equal to zero. Even the boron central atom has only 6 electrons instead of 8 in the valence shell, it also gets a formal charge equal to zero.

We have no required to form multiple bonds and provide boron atom to 8 electrons in its valence shell.

The boron can achieve stability by just having 6 electrons in the valence shell.

Therefore, the above lewis structure of BF3 (Boron trifluoride) is most stable and appropriate in nature.

Also check – 

What are the electron and molecular geometry of BF3?

The molecular geometry of BF3 is trigonal planar. The boron (B) atom is located at the central and three Fluorine (F) atoms at the corner of an equilateral triangle. They all lie in the same plane. Hence, the shape of BF3 is trigonal planar.

The Boron (B) central atom is attached to three fluorine (F) atoms and it has no lone pairs. So, there are three regions of electron density (all three are bonding regions) around the Boron central atom.

According to the VSEPR theory, the central atom with three regions of electron density adopts a trigonal planar geometry. Because repulsion is minimum in electron pairs at this position.

“A region of electron density means the group of bonding or nonbonding electrons that present around the atom. The single bond, double bond, or even triple bond around the atom will be counted as one region.”

Why molecular geometry of BF3 is Trigonal planar?

The electron pair around the Boron central atom will repel each other and try to go far from each other, they will take the position where repulsion becomes minimum between them.

According to the VSEPR theory, “the maximum distance three regions of electron density can get away from affords a geometry called Trigonal planar.”

BF3 molecular geometry or shape

“The geometry of molecule of BF3 is ‘Trigonal Planar. ‘ With reference of Chemistry, ‘Trigonal Planar’ is a model with three atoms around one atom in the middle. It’s like peripheral atoms all in one plane, as all three of them are similar with the 120° bond angles on each that makes them an equilateral triangle.”

We can also find the electron and molecular geometry of BF3 using the AXN method and VSEPR chart.

AXN method to determine the molecular geometry

AXN is a simple formula that represents the number of the bonded atom and lone pair on the central atom to predict the shape of the molecule using the VSEPR chart.

AXN notation for BF3 molecule:

  • A denotes the central atom, so, Boron is the central atom in BF3 molecule A = Boron
  • X denotes the bonded atoms to the central atom, Boron is bonded with three fluorine atoms. Therefore, X = 3
  • N represents the lone pair on the central atom, as per BF3 Lewis structure, the Boron central atom has zero lone pair. Hence, N = 0

So, the AXN generic formula for the BF3 molecule becomes AX3N0 or AX3.

As per the VSEPR chart, if a molecule gets AX3 generic formula then its molecular geometry will be trigonal planar and electron geometry will also be trigonal planar.

BF3 molecular and electron geometry as per VSEPR

Therefore, the molecular geometry for BF3 is trigonal planar and its electron geometry is also trigonal planar.

Hybridization of BF3

The hybridization of BF3 is Sp2 because the steric number of the boron central atom is three.

The formula for calculating the steric number is-

steric number to calculate hybridization

Steric number = (Number of bonded atoms attached to central atom + Lone pair on central atom)

In the case of the BF3 molecule, boron is the central atom that is attached to the three bonded atoms(fluorine) and it has no lone pairs.

Hence, (3 + 0) = 3 is the steric number of central atom boron in the BF3 molecule that gives Sp2 hybridization.

Steric numberHybridization
1S
2Sp
3Sp²
4Sp³
5Sp³d
6Sp³d²

The bond angle of BF3

Since, we know, the molecular geometry of BF3 is Trigonal planar, which means, all the atoms lie in the same plane. The three B-F bonds are arranged in the same plane with a 120º bond angle to each other.

∴ The F-B-F bond angle in BF3 is 120º.

BF3 bond angle

Also check:- How to find bond angle?

Is BF3 polar or nonpolar?

So, Is BF3 polar or nonpolar? Well, it is obvious that BF3 is a nonpolar molecule, because each B-F bond is directed at the angle of 120° to each other in a plane, hence, canceling of dipole moment generated along these bonds is very easy.

Therefore, no dipole moment is generated in the BF3 molecule, hence, it is nonpolar in nature.

Also, the molecular geometry of BF3 is very symmetrical since no lone pair is present on the central atom that can cause distortion in a molecule, so, the charges are distributed uniformly all over the atoms.

Hence, the dipole generated in the BF3 molecule will easily cancel out each other leaving this molecule nonpolar in nature.

Read in detail

FAQ

How many lone pairs are present in the lewis structure of BF3?

Lone pairs are those represented as dots in the lewis diagram that do not take part in the formation of bonds and are also called nonbonding electrons.

By looking at the BF3 Lewis structure, we see, there are 18 dot electrons means 9 lone pairs present. [∴ 2 dot electrons means one lone pair).

So, in the BF3 Lewis structure, a total of 9 lone pairs are present. (3 lone pairs on each fluorine atom)

lone pair in BF3 lewis structure

The total number of bond pairs present in the lewis structure of BF3?

Bonding pairs are the pair of electrons that are in a bond. A single bond has one bond pair means 2 bonding electrons. 

Two bonding electron between the atoms forms a single covalent bond.

Now, as per the BF3 Lewis structure, the central atom boron is attached with three single covalent bonds, and one single covalent bond means 2 bonding electrons.

Hence, total bonding electrons is (3 × 2) = 6 bonding electrons that make 3 bond pairs.

∴ In the BF3 Lewis structure, a total of 3 bond pairs is present.

bond pair in bf3 lewis structure

Why electron and molecular geometry of BF3 are same?

Two types of geometry can be predicted with the help of VSEPR theory- (a). Electron geometry (b). Molecular geometry

Electron geometry considers all electrons(Bonding and Lone pair electrons) whereas molecular geometry considers only Bonding pairs to determine the geometry of any molecule.

As we know, the molecular geometry of BF3 is trigonal planar and electron geometry is also trigonal planar. 

Since there is no lone pair present on the central atom in the BF3 lewis structure. Therefore, both the molecular and electrons geometry of BF3 will be calculated with the help of bonded pair of electrons.

Hence, the molecular geometry and electron geometry of BF3 is the same.

Why Boron central atom of the BF3 lewis structure complete the octet in just 6 electrons?

In the case of the BF3 Lewis structure, the Boron central atom gets a formal charge equal to zero when it has 6 electrons around. But when a Boron central atom is distributed with 8 electrons it gets an uneven formal charge.

Hence, we have to choose the lewis diagram that has the least formal charge on each atom, Therefore, the Boron central atom is provided with only 6 electrons instead of 8 for completing the octet shell.

Boron is exceptional to the octet rule, just like Aluminum.

Why the molecular geometry of BF3 is Trigonal planar?

The molecular geometry of BF3 is Trigonal planar, because, the central atom Boron is attached with three bonded regions, they will repel each other as much as possible.

According to VSEPR theory, the three bonded regions can be at a maximum distance to each other when they afford a geometry called Trigonal planar.

Also Read:

Properties and uses of Boron trifluoride

  • It is a colorless gas with a pungent odor.
  • It forms white fumes in moist air.
  • It is lewis acid and is also commonly referred to as electron deficient.
  • It has highly symmetrical geometry with zero net dipole moment.
  • Its boiling point is −100.3 °C and its melting point is −126.8 °C.
  • It is nonflammable and nonpolar in nature.
  • BF3 is isoelectronic with the carbonate anion.
  • It is used as a reagent in organic synthesis.
  • It is used in the preparation of diborane and as a catalyst in many industrial reactions.
  • It is used in fumigation.

Reactions of Boron trifluoride

When boron oxides react with the 6 moles of hydrogen fluoride, it produces BF3 along with water molecules.

⇒ B2O3 + 6HF → 2BF3 + 3H2O

The reaction of Boron trifluoride with water produces, boric acid and fluoroboric acid.

⇒ 4BF3 + 3H2O → 3HBF4 + B(OH)3

Boron trifluoride can also be produced from the reaction of sodium tetrafluoroborate, boron trioxide, and sulfuric acid.

⇒ 6NaBF4 + B2O3 + 6H2SO4 → 8BF3 + 6NaHSO4 + 3H2O

Summary

  • The total valence electron is available for drawing the Boron trifluoride (BF3) Lewis structure is 24.
  • The molecular geometry or shape of BF3 is Trigonal planar. 
  • The electron geometry of BF3 is also Trigonal planar, as its central atom, is surrounded by the 3 regions of electron density.
  • In the BF3 Lewis dot structure, a total of 9 lone pairs and 3 bond pairs are present.
  • The hybridization of boron in BF3 is sp2. Since its steric number is 3.
  • The bond angle in BF3 is 120º. According to VSEPR, the BF3 has a Trigonal planar geometry with each F-B-F bond angle equal to 120º.
  • The net dipole moment of BF3 is zero, hence, it is nonpolar in nature.
  • The overall formal charge in BF3 is zero.
Share it...

Leave a Comment

Your email address will not be published.

Connect with us

© copyright 2022 - topblogtenz.com. All rights Reserved